The influence of initial temperature on flame acceleration and deflagration-to-detonation transition
نویسندگان
چکیده
منابع مشابه
Flame Acceleration and Transition from Deflagration to Detonation in Hydrogen Explosions
Computational fluid dynamics based solvers have been developed for explosion modeling in hazards analysis. These include a numerical approach to simulate flame acceleration and deflagration to detonation transition in hydrogen-air mixture and two detonation solvers. The former solves fully compressible, multidimensional, transient, reactive Navier–Stokes equations with a chemical reaction mecha...
متن کاملInvestigations on Deflagration to Detonation Transition
4 simplified model that can predict the transition from compaction to detonation and shock to detonation is given with the uim of describing experiments in beds of porous HMX. In the case of compaction to detonation. the energy of early impact generates a slowly moving. convectivereactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined d...
متن کاملTheoretical Analysis on Deflagration-to-Detonation Transition
The study on deflagration-to-detonation transition (DDT) is very important because this mechanism has relevance to safety issues in industries, where combustible premixed gases are in general use. However, the quantitative prediction of DDT is one of the major unsolved problems in combustion and detonation theory to date. In this paper, the DDT process is studied theoretically and the critical ...
متن کاملSimulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems
Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane–air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared...
متن کاملFlame-driven Deflagration-to-detonation Transitions in Type Ia Supernovae?
Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symposium (International) on Combustion
سال: 1996
ISSN: 0082-0784
DOI: 10.1016/s0082-0784(96)80140-8